Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 39(5): 1987-1996, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36696539

RESUMO

Wettability-tailored tracks are emerging as an efficient approach to collecting and transporting underwater air bubbles as well as water from the mist. However, tailoring the surface wettability by modifying the surface structural features via physiochemical methods to create superhydrophilic-superhydrophobic contrast tracks suffers from long-term durability issues, while the emerging liquid-infused slippery surface has inherent design engineering limitations and issues from infused oil depletion. Herein, we demonstrate that by selective silicone oil grafting onto the glass substrate, it is possible to create a wettability contrast of ∼ 43°. Further, we illustrate the application of such tracks for underwater air bubble capturing and transportation in an aqueous medium with surface tension ranging from 72 to 43.5 mN/m. In addition, the potential of these nonadhesive and adhesive tracks for water collection from the mist is shown and the critical effect of the track dimension and intertrack spacing on the water harvesting rate is investigated in detail. The study illustrates that the nonadhesive nature of the oil-grafted region enables the easy transport of underwater air bubbles as well as water from the flow medium and thus offers an easy and facile approach to creating substrates for underwater air bubble collection and water harvesting.

2.
Lab Chip ; 22(21): 4110-4117, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36128986

RESUMO

Droplet splitting by exploiting tailored surface wettability is emerging as an important pathway to creating ultralow volumes of samples that can have applications in bioassays, tissue engineering, protein chips, and material synthesis. Reduction of droplet volumes enables the encapsulation of single biological cells which allows high throughput screening. In this work, we demonstrate a facile fabrication approach to create a non-adhesive contrast quartz substrate that allows droplet splitting under gravitational force and its utilization to trap single biological cells for Raman spectroscopic studies. The non-adhesive contrast surface is created by low-power continuous-wave laser-assisted removal of the region of interest from a biocompatible non-adhesive silicone oil grafted quartz substrate. For a given laser spot dimension, the hydrophilic zone dimension is controlled via irradiation with varying laser powers. The fabricated non-adhesive contrast surface can split a microliter droplet into pico- and sub-picolitre daughter droplets. By using the substrate, the trapping of a single polystyrene bead is demonstrated and the recording of Raman spectra is carried out. Additionally, the Raman spectra of two biological cells, yeast cells and human mononuclear cells (MNCs), from a daughter droplet are recorded independently and from a mixture of the solutions. This single-cell Raman analysis could find applications in cell identification and type discrimination, biochemical imaging, metabolic and functional characterization, and clinical and toxicity studies.


Assuntos
Poliestirenos , Quartzo , Humanos , Óleos de Silicone , Análise Espectral Raman/métodos , Molhabilidade , Análise de Célula Única/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...